Some more problems on divergence and curl

- 1. Prove each of the following identities.
 - (a) $\vec{\nabla} \cdot \vec{\nabla} \times \vec{F} = 0$ for a vector field $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$
 - (b) $\vec{\nabla} \cdot (\vec{\nabla} f \times \vec{\nabla} g) = 0$ for a pair of functions $f : \mathbb{R}^3 \to \mathbb{R}$ and $g : \mathbb{R}^3 \to \mathbb{R}$
- 2. Consider a vector field of the form $\vec{F}(\vec{r}) = r^n \hat{r}$ in a k-dimensional universe. For example, the k = 2 universe is the plane for which $\vec{r} = \langle x, y \rangle$ and the k = 3 universe is ordinary space for which $\vec{r} = \langle x, y, z \rangle$. We can also consider universes of dimension k > 3.
 - (a) Find an expression for $\vec{\nabla} \cdot \vec{r}$ in dimension k.
 - (b) Find a general expression for $\vec{\nabla} \cdot \vec{F}(\vec{r}) = \vec{\nabla} \cdot (r^n \hat{r})$. Note that this expression will involve both the dimension k and the power n. Hint: Use a product rule, your result for (a), and a result about gradients from earlier in the semester.
 - (c) Consider static electric fields \vec{E} in "flatland," that is , the k = 2 universe. Suppose that $\vec{\nabla} \cdot \vec{E} = 0$ for the electric field due to a point charge (at any point other than the position of the point charge). From this, deduce the form of Coulomb's law in the k = 2 universe. Compare this to Coulomb's law in the k = 3 universe.